Hamiltonian and Lagrangian BRST Quantization in Riemann Manifold

نویسندگان

چکیده

The BRST quantization of particle motion on the hypersurface $V_{(N-1)}$ embedded in Euclidean space $R_N$ is carried out both Hamiltonian and Lagrangian formalism. Using Batalin-Fradkin-Fradkina-Tyutin (BFFT) formalism, second class constrained obtained using analysis are converted into first constraints. Then BFV symmetry constructed. We have given a simple example these kind system. In end we discussed Batalin-Vilkovisky formalism context this (BFFT modified)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Hamiltonian to Lagrangian Sp(2) BRST Quantization

We give a formal proof of the equivalence of Hamiltonian and Lagrangian BRST quantization. This is done for a generic Sp(2)-symmetric theory using flat (Darboux) coordinates. A new quantum master equation is derived in a Hamiltonian setting which contains all the Hamiltonian fields and momenta of a given theory. UUITP-18/95 hep-th/9511020

متن کامل

Local Superfield Lagrangian BRST Quantization

A θ-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is proposed on the basis of an extension of general reducible gauge theories to special superfield models with a Grassmann parameter θ. We solve the problem of describing the quantum action and the gauge algebra of an L-stage-reducible superfield model in terms of a BRST charge for a formal dynamical system w...

متن کامل

Riemann Manifold Langevin and Hamiltonian Monte Carlo

This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs required to tu...

متن کامل

Elements of Fedosov geometry in Lagrangian BRST Quantization

A Lagrangian formulation of the BRST quantization of generic gauge theories in general irreducible non-Abelian hypergauges is proposed on the basis of the multilevel Batalin–Tyutin formalism and a special BV–BFV dual description of a reducible gauge model on the symplectic supermanifold M0 locally parameterized by the antifields for Lagrangian multipliers and the fields of the BV method. The qu...

متن کامل

Riemann manifold Langevin and Hamiltonian Monte Carlo methods

The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in High Energy Physics

سال: 2022

ISSN: ['1687-7357', '1687-7365']

DOI: https://doi.org/10.1155/2022/2158485